The effects of climate change on air quality in Australia and related health impacts

Dr Martine Dennekamp 30 August 2011
Monash Centre for Occupational and Environmental Health
Epidemiology and Preventive Medicine

Monash University, Melbourne
Climate change impacts in Australia: key risks to human health:

- Increased frequency and severity of heat waves and other extreme weather events: floods, cyclones, storms and **bushfires**
- Changing incidence of vector-borne infectious disease
- **Deteriorations in** water and **air quality**
- Food availability and prices
- Impacts on mental health
- Impacts on community and Indigenous health
- Health care system capacity, infrastructure and service issues.

From: National Adaptation Research Plan for Human Health
Interaction between Air Pollution and Climate Change

Adapted from Dennekamp & Carey, 2010
(NSW Public Health Bulletin. 21:5-6)
Air Pollutants – most relevant to climate change

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Health Effects</th>
<th>NEPM* Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate Matter</td>
<td>• Decreased lung function</td>
<td>PM$_{10}$: 50 µg/m3 (24 hours)</td>
</tr>
<tr>
<td></td>
<td>• Exacerbation of respiratory and cardiac conditions</td>
<td>PM$_{2.5}$: Advisory 25 µg/m3 (24 hours)</td>
</tr>
<tr>
<td></td>
<td>• Premature Mortality</td>
<td></td>
</tr>
<tr>
<td>Ozone</td>
<td>• Decreased lung function</td>
<td>0.10 ppm (1 hour)</td>
</tr>
<tr>
<td></td>
<td>• Exacerbation of respiratory conditions</td>
<td>0.08 ppm (4 hours)</td>
</tr>
</tbody>
</table>

* National Environment Protection Measures
Air Pollutants – vulnerable groups

• Children

• Elderly

• People with existing respiratory disease, such as asthma, bronchitis, emphysema

• People with existing cardiovascular disease
Particle Sizes

<table>
<thead>
<tr>
<th>Particle</th>
<th>Australian Air Quality standard?</th>
<th>Unit of measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM$_{10}$</td>
<td>Yes</td>
<td>50 μg/m3</td>
</tr>
<tr>
<td>PM$_{2.5}$</td>
<td>Only an Advisory Standard</td>
<td>25 μg/m3</td>
</tr>
<tr>
<td>UFP</td>
<td>No</td>
<td>- #/cm3</td>
</tr>
</tbody>
</table>
Particulate Matter

Bushfire Smoke

PM$_{10}$

NEPM Standard for PM$_{10}$: 50 µg/m3

MONASH Centre for Occupational and Environmental Health
Bushfire Smoke

Particulate Matter

PM10
PM2.5

MONASH
Centre for Occupational and Environmental Health
Particulate Matter

Bushfire smoke and Cardiac Arrest Study - Melbourne

Study Period: Bushfire season 2006 – 2007

Population: Melbourne residents >35 years

Health outcome: Out-of-Hospital Cardiac Arrests (OHCA)

Air Pollutants: $\text{PM}_{10}, \text{PM}_{2.5}, \text{NO}_2, \text{CO}, \text{O}_3, \text{SO}_2$ (daily average)

Methodology: Case-crossover design, adjusted for temperature and humidity
Bushfire Smoke and Cardiac Arrest Study - Melbourne

Number of Out-of-Hospital Cardiac Arrests: 807

Preliminary Results:

• An increase in PM_{10} and $\text{PM}_{2.5}$ is associated with an increased risk of an OHCA

• NO_2, SO_2, O_3, CO: No significant associations with OHCA
Particulate Matter

Dust Storm – 23 September 2009

ANZ stadium, Sydney

MODIS Terra satellite image of the dust storm over eastern Australia
(courtesy of NASA)
Respiratory health effects of 11 Dust Storms in Brisbane

Outcome:

Dust storms were significantly associated with changes in asthma severity

(Rutherford S. et al 1999)
Particulate Matter - Bushfires and Dust storms

- Exposure to both bushfire smoke and dust storms have shown to have an effect on health, particularly related to asthma exacerbation.

- Bushfire smoke particles are smaller than particles in Dust Storms, and therefore have the potential to penetrate deeper into the airways where more damage can be done. In addition to having an effect on the respiratory system, smaller particles have shown to have an effect on the cardiovascular system.
Ozone

Ozone standards have been exceeded in Sydney every year since 1994

Future ozone predictions for Australia show increases in peak ozone concentrations in Australian cities – Ozone-associated deaths are also predicted to increase

However improvement are possible relatively quickly

Example:
1996 Olympic games – traffic restrictions resulted in 30% decrease in ozone. A significant lower rate of asthma events were found
(Friedman MS, et al. JAMA 285:897–905)
Concluding remarks

• Dust storms and bushfires are not localized problems

• Increase in number and intensity of Dust Storms and Bushfires is unavoidable – Prepare

• Measures to reduce greenhouse gas emission can have additional co-benefits for health by reducing air pollution
Concluding remarks

• We can achieve results short term, by policies that aim to reduce motor vehicle use by increasing the use of alternative transport, such as walking and cycling - this measure will reduce both greenhouse gas emissions and air pollutant concentrations

• Important to consider air pollution in policy as actions taken for climate change may not always be good for air quality